Monday, November 13, 2023

Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023

Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023

The infamous 1997 mad cow feed ban i.e. Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

***>However, this recommendation is guidance and not a requirement by law.

WITH GREAT URGENCY, THE Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) MUST BE ENHANCED AND UPDATED TO INCLUDE CERVID, PIGS, AND SHEEP, SINCE RECENT SCIENCE AND TRANSMISSION STUDIES ALL, INCLUDING CATTLE, HAVE SHOWN ORAL TSE PrP TRANSMISSIONS BETWEEN THE SPECIES, AND THIS SHOULD BE DONE WITH THE UTMOST URGENCY, REASONS AS FOLLOW.

First off I will start with a single BSE feed breach 10 years after 1997 partial ban. If you got to the archived link, all the way down to bottom…THE NEXT YEAR I RECALL ONE WITH 10,000,000+ banned products recall…see this records at the bottom…terry 

REASON The feed was manufactured from materials that may have been contaminated with mammalian protein. 

VOLUME OF PRODUCT IN COMMERCE 27,694,240 lbs DISTRIBUTION MI 

snip..... end

***>However, this recommendation is guidance and not a requirement by law.

THIS MUST CHANGE ASAP!

“For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.”

Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

https://web.archive.org/web/20170404125557/http://webarchive.nationalarchives.gov.uk/20130822084033/http://www.defra.gov.uk/animal-diseases/files/qra_chronic-wasting-disease-121029.pdf


PLoS One. 2020 Aug 20;15(8):e0237410. doi: 10.1371/journal.pone.0237410. eCollection 2020.

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease

Nathaniel D Denkers 1 , Clare E Hoover 2 , Kristen A Davenport 3 , Davin M Henderson 1 , Erin E McNulty 1 , Amy V Nalls 1 , Candace K Mathiason 1 , Edward A Hoover 1

PMID: 32817706 PMCID: PMC7446902 DOI: 10.1371/journal.pone.0237410

Abstract

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

Snip…

Discussion

As CWD expands across North America and Scandinavia, how this disease is transmitted so efficiently remains unclear, given the low concentrations of prions shed in secretions and excretions [13, 14]. The present studies demonstrated that a single oral exposure to as little as 300nmg of CWD-positive brain or equivalent saliva can initiate infection in 100% of exposed white-tailed deer. However, distributing this dose as 10, 30 ng exposures failed to induce infection. Overall, these results suggest that the minimum oral infectious exposure approaches 100 to 300 ng of CWD-positive brain equivalent. These dynamics also invite speculation as to whether potential infection co-factors, such as particle binding [46, 47] or compromises in mucosal integrity may influence infection susceptibility, as suggested from two studies in rodent models [48, 49].

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237410


PRION 2023 CONTINUED; 

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

Prion 2023 Experimental Oronasal Inoculation of the Chronic Wasting Disease Agent into White Tailed Deer 

Author list: Sarah Zurbuchena,b , S. Jo Moorea,b , Jifeng Biana , Eric D. Cassmanna , and Justin J. Greenleea . a. Virus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, US b. Oak Ridge Institute for Science and Education (ORISE), U.S. Department of Energy, Oak Ridge, TN, United States 

Aims: The purpose of this experiment was to determine whether white-tailed deer (WTD) are susceptible to inoculation of chronic wasting disease (CWD) via oronasal exposure. 

Materials and methods: Six male, neutered WTD were oronasally inoculated with brainstem material (10% w/v) from a CWD-positive wild-type WTD. The genotypes of five inoculated deer were Q95/G96 (wild-type). One inoculated deer was homozygous S at codon 96 (96SS). Cervidized (Tg12; M132 elk PrP) mice were inoculated with 1% w/v brainstem homogenate from either a 96GG WTD (n=10) or the 96SS WTD (n=10). 

Results: All deer developed characteristic clinical signs of CWD including weight loss, regurgitation, and ataxia. The 96SS individual had a prolonged disease course and incubation period compared to the other deer. Western blots of the brainstem on all deer yielded similar molecular profiles. All deer had widespread lymphoid distribution of PrPCWD and neuropathologic lesions associated with transmissible spongiform encephalopathies. Both groups of mice had a 100% attack rate and developed clinical signs, including loss of body condition, ataxia, and loss of righting reflex. Mice inoculated with material from the 96SS deer had a significantly shorter incubation period than mice inoculated with material from 96GG deer (Welch two sample T-test, P<0.05). Serial dilutions of each inocula suggests that differences in incubation period were not due to a greater concentration of PrPCWD in the 96SS inoculum. Molecular profiles from western blot of brain homogenates from mice appeared similar regardless of inoculum and appear similar to those of deer used for inoculum. 

Conclusions: This study characterizes the lesions and clinical course of CWD in WTD inoculated in a similar manner to natural conditions. It supports previous findings that 96SS deer have a prolonged disease course. Further, it describes a first pass of inoculum from a 96SS deer in cervidized mice which shortened the incubation period. 

Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection, analysis, decision to publish, or preparation of the manuscript. 

Acknowledgement: We thank Ami Frank and Kevin Hassall for their technical contributions to this project.

=====end 

PRION 2023 CONTINUED; 

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf


Price of TSE Prion Poker goes up substantially, all you cattle ranchers and such, better pay close attention here...terry


Transmission of the chronic wasting disease agent from elk to cattle after oronasal exposure

Justin Greenlee, Jifeng Bian, Zoe Lambert, Alexis Frese, and Eric Cassmann Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA 

Aims: The purpose of this study was to determine the susceptibility of cattle to chronic wasting disease agent from elk. 

Materials and Methods: Initial studies were conducted in bovinized mice using inoculum derived from elk with various genotypes at codon 132 (MM, LM, LL). Based upon attack rates, inoculum (10% w/v brain homogenate) from an LM132 elk was selected for transmission studies in cattle. At approximately 2 weeks of age, one wild type steer (EE211) and one steer with the E211K polymorphism (EK211) were fed 1 mL of brain homogenate in a quart of milk replacer while another 1 mL was instilled intranasally. The cattle were examined daily for clinical signs for the duration of the experiment. One steer is still under observation at 71 months post-inoculation (mpi). 

Results: Inoculum derived from MM132 elk resulted in similar attack rates and incubation periods in mice expressing wild type or K211 bovine PRNP, 35% at 531 days post inoculation (dpi) and 27% at 448 dpi, respectively. Inoculum from LM132 elk had a slightly higher attack rates in mice: 45% (693 dpi) in wild type cattle PRNP and 33% (468) in K211 mice. Inoculum from LL132 elk resulted in the highest attack rate in wild type bovinized mice (53% at 625 dpi), but no K211 mice were affected at >700 days. At approximately 70 mpi, the EK211 genotype steer developed clinical signs suggestive of prion disease, depression, low head carriage, hypersalivation, and ataxia, and was necropsied. Enzyme immunoassay (IDEXX) was positive in brainstem (OD=4.00, but non-detect in retropharyngeal lymph nodes and palatine tonsil. Immunoreactivity was largely limited to the brainstem, midbrain, and cervical spinal cord with a pattern that was primarily glia-associated. 

Conclusions: Cattle with the E211K polymorphism are susceptible to the CWD agent after oronasal exposure of 0.2 g of infectious material. 

"Cattle with the E211K polymorphism are susceptible to the CWD agent after oronasal exposure of 0.2 g of infectious material."

=====end

Strain characterization of chronic wasting disease in bovine-PrP transgenic mice 

Conclusions: Altogether, these results exhibit the diversity of CWD strains present in the panel of CWD isolates and the ability of at least some CWD isolates to infect bovine species. Cattle being one of the most important farming species, this ability represents a potential threat to both animal and human health, and consequently deserves further study. 

"Altogether, these results exhibit the diversity of CWD strains present in the panel of CWD isolates and the ability of at least some CWD isolates to infect bovine species. Cattle being one of the most important farming species, this ability represents a potential threat to both animal and human health, and consequently deserves further study."

=====end


https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

Characterization of Classical Sheep Scrapie in White-tailed Deer after Experimental Oronasal Exposure 

Justin J. Greenlee,1, S. Jo Moore,1,a Eric D. Cassmann,1 Zoe J. Lambert,1 Robyn D. Kokemuller,1 Jodi D. Smith,1,b Robert A. Kunkle,1 Qingzhong Kong,2 and M. Heather West Greenlee3 1Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; 2Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; and 3Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA 

Background. Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent. 

Methods. We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6). 

Results. All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats. 

Conclusions. WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult. 

Keywords. cervid; chronic wasting disease; prion disease; scrapie; transmissible spongiform encephalopathy; white-tailed deer. 

https://academic.oup.com/jid/article/227/12/1386/6809058?login=false


https://watermark.silverchair.com/jiac443.pdf


Experimental transmission of ovine atypical scrapie to cattle

Timm Konold, John Spiropoulos, Janet Hills, Hasina Abdul, Saira Cawthraw, Laura Phelan, Amy McKenna, Lauren Read, Sara Canoyra, Alba Marín-Moreno & Juan María Torres 

Veterinary Research volume 54, Article number: 98 (2023) 

Abstract

Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. 

Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.

snip...

The study results support the decision to maintain the current ban on animal meal in feedstuffs for ruminants, particularly as atypical scrapie occurs world-wide, and eradication is unlikely for a sporadic disease.

In summary, experimental inoculation of cattle with the atypical scrapie agent may produce clinical disease indistinguishable from classical BSE, which cannot be diagnosed by conventional diagnostic tests, but prions can be amplified by ultrasensitive tests in both clinically affected and clinically unremarkable cattle, which reveal classical BSE-like characteristics. Further studies are required to assess whether a BSE-like disease can be confirmed by conventional tests, which may initially include a second passage in cattle.

https://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-023-01224-3


***> The study results support the decision to maintain the current ban on animal meal in feedstuffs for ruminants, particularly as atypical scrapie occurs world-wide, and eradication is unlikely for a sporadic disease.<***

Title: Transmission of atypical BSE: a possible origin of Classical BSE in cattle

Authors: Sandor Dudas1, Samuel James Sharpe1, Kristina Santiago-Mateo1, Stefanie Czub1, Waqas Tahir1,2, *

Affiliation: 1National and WOAH reference Laboratory for Bovine Spongiform Encephalopathy, Canadian Food inspection Agency, Lethbridge Laboratory, Lethbridge, Canada. 2Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.

*Corresponding and Presenting Author: waqas.tahir@inspection.gc.ca

Background: Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease of cattle and is categorized into classical and atypical forms. Classical BSE (CBSE) is linked to the consumption of BSE contaminated feed whereas atypical BSE is considered to be spontaneous in origin. The potential for oral transmission of atypical BSE is yet to be clearly defined.

Aims: To assess the oral transmissibility of atypical BSE (H and L type) in cattle. Should transmission be successful, determine the biochemical characteristics and distribution of PrPSc in the challenge cattle.

Material and Methods: For oral transmission, calves were fed with 100 g of either H (n=3) or L BSE (n=3) positive brain material. Two years post challenge, 1 calf from each of the H and L BSE challenge groups exhibited behavioural signs and were euthanized. Various brain regions of both animals were tested by traditional and novel prion detection methods with inconclusive results. To detect infectivity, brain homogenates from these oral challenge animals (P1) were injected intra-cranially (IC) into steer calves. Upon clinical signs of BSE, 3/4 of IC challenged steer calves were euthanized and tested for PrPSc with ELISA, immunohistochemistry and immunoblot.

Results: After 6 years of incubation, 3/4 animals (2/2 steers IC challenged with brain from P1 L-BSE oral challenge and 1/2 steer IC challenged with brain from P1 H-BSE oral challenge) developed clinical disease. Analysis of these animals revealed high levels of PrPSc in their brains, having biochemical properties similar to that of PrPSc in C-BSE.

Conclusion: These results demonstrate the oral transmission potential of atypical BSE in cattle. Surprisingly, regardless of which atypical type of BSE was used for P1 oral challenge, PrPSc in the P2 animals acquired biochemical characteristics similar to that of PrPSc in C-BSE, suggesting atypical BSE as a possible origin of C-BSE in UK.

Presentation Type: Oral Presentation

Funded by: CFIA, Health Canada, Alberta Livestock and Meat Agency, Alberta Prion Research Institute

Grant Number: ALMA/APRI: 201400006, HC 414250

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf


Molecular phenotype shift after passage of low-type bovine spongiform encephalopathy (L-BSE). 

Zoe J. Lambert, M. Heather West Greenlee, Jifeng Bian, Justin J. Greenlee Ames, USA 

Aims: The purpose of this study is to compare the molecular phenotypes of L-BSE in wild type cattle and cattle with the E211K polymorphism to samples of other cattle TSEs, such as classical BSE (C-BSE), hightype BSE (H-BSE), and transmissible mink encephalopathy (TME). 

Materials and Methods: Two wild type cattle (EE211 PRNP) and one steer with the E211K polymorphism (EK211) were intracranially inoculated with 1 mL of brain homogenate that originated from a 2005 French L-BSE case. Multiple assays were used to compare and differentiate tissues, including enzyme immunoassay, western blot (Sha31, 12B2, SAF84), stability (Sha31), and immunohistochemistry (F99/97). 

Results: Approximately 16.6 months post-inoculation, Steer 6 (EK211 L-BSE) developed neurologic signs, including agitation, difficulty eating accompanied by weight loss, head tremor, ataxia, and fasciculations in the forelimbs, and was necropsied. Enzyme immunoassays demonstrated misfolded prion protein in the brainstem (4.0 O.D) but not in peripheral tissues, such as the retropharyngeal lymph node and palatine tonsil. When compared by western blot, the molecular phenotype of the brainstem of Steer 6 (EK211L-BSE) is higher than that of wildtype cattle inoculated with L-BSE, requiring careful differentiation from C-BSE. Ongoing mouse studies in bovinized mice (K211 and TgBov) will provide data to compare to all other BSE strains available, including L-BSE, C-BSE, H-BSE, E211K H-BSE, and TME. 

Conclusions: Further study of L-BSE in EK211 cattle with a higher molecular phenotype in the brainstem may give more insight into the origin of C-BSE. 

Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript. This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views of USDA, ARS, DOE, or ORAU/ORISE. 

Grant number: DOE contract number DE-SC0014664 Acknowledgements: NA Theme: Animal prion diseases

=====end

PRION 2023 CONTINUED;


https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.

https://www.ars.usda.gov/research/publications/publication/?seqNo115=337105


https://www.ars.usda.gov/research/publications/publication/?seqNo115=326166


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP 

Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.

Interpretive Summary:

The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.

https://www.ars.usda.gov/research/publications/publication/?seqNo115=353091


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 


***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 

https://www.ars.usda.gov/research/publications/publication/?seqNo115=353091


https://www.ars.usda.gov/research/project/?accnNo=432011&fy=2017

https://www.ars.usda.gov/research/publications/publication/?seqNo115=337105


Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.

https://www.ars.usda.gov/research/publications/publication/?seqNo115=337105


CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

LINE TO TAKE

3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:- 

"There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.

DO Hagger RM 1533 MT Ext 3201

http://web.archive.org/web/20030822054419/www.bseinquiry.gov.uk/files/yb/1990/09/21009001.pdf


While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...

http://web.archive.org/web/20031026000118/www.bseinquiry.gov.uk/files/yb/1990/08/23004001.pdf


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.

http://web.archive.org/web/20030822031154/www.bseinquiry.gov.uk/files/yb/1990/09/10007001.pdf


May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...

http://web.archive.org/web/20030822052332/www.bseinquiry.gov.uk/files/yb/1990/09/11005001.pdf


3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...

http://web.archive.org/web/20030822052438/www.bseinquiry.gov.uk/files/yb/1990/09/12002001.pdf


But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...

http://web.archive.org/web/20030518170213/www.bseinquiry.gov.uk/files/yb/1990/09/13004001.pdf


Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....

http://web.archive.org/web/20030822054419/www.bseinquiry.gov.uk/files/yb/1990/09/21009001.pdf


***>However, this recommendation is guidance and not a requirement by law.


RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________ 

PRODUCT 

a) CO-OP 32% Sinking Catfish, Recall # V-100-6; 

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6; 

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6; 

e) "Big Jim’s" BBB Deer Ration, Big Buck Blend, Recall # V-104-6; 

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6; 

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6; 

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6; 

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6; 

j) CO-OP LAYING CRUMBLES, Recall # V-109-6; 

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6; l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6; 

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, 

Recall # V-112-6 CODE 

Product manufactured from 02/01/2005 until 06/06/2006 

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete. 

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants". 

VOLUME OF PRODUCT IN COMMERCE 125 tons DISTRIBUTION AL and FL 

______________________________ 

PRODUCT Bulk custom dairy feds manufactured from concentrates, Recall # V-113-6 CODE All dairy feeds produced between 2/1/05 and 6/16/06 and containing H. J. Baker recalled feed products. RECALLING FIRM/MANUFACTURER Vita Plus Corp., Gagetown, MI, by visit beginning on June 21, 2006. 

Firm initiated recall is complete. 

REASON The feed was manufactured from materials that may have been contaminated with mammalian protein. 

VOLUME OF PRODUCT IN COMMERCE 27,694,240 lbs DISTRIBUTION MI 

______________________________ 

PRODUCT Bulk custom made dairy feed, 

Recall # V-114-6 CODE None 

RECALLING FIRM/MANUFACTURER Burkmann Feeds LLC, Glasgow, KY, by letter on July 14, 2006. Firm initiated recall is ongoing. REASON Custom made feeds contain ingredient called Pro-Lak, which may contain ruminant derived meat and bone meal. 

VOLUME OF PRODUCT IN COMMERCE ????? 

DISTRIBUTION KY

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

### 

https://web.archive.org/web/20100120023832/http://www.fda.gov/Safety/Recalls/EnforcementReports/2006/ucm120413.htm


***>However, this recommendation is guidance and not a requirement by law.


VOLUME OF PRODUCT IN COMMERCE 27,694,240 lbs DISTRIBUTION MI…Firm initiated recall is complete???

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES — CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling’s 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI – 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J – PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code – only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

https://web.archive.org/web/20100702151854/http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm


These are only a few of many, many of the same types BSE Feed violations over the years, to many to list here.

THIS MUST CHANGE ASAP!

***>This draft Level 1 guidance, when finalized, will represent the Agency’s current thinking on the topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public.<***

Draft Guidance on Use of Material From Deer and Elk in Animal Feed; CVM Updates on Deer and Elk Withdrawn FDA Veterinarian Newsletter July/August 2003 Volume XVIII, No 4

FDA has announced the availability of a draft guidance for industry entitled “Use of Material from Deer and Elk in Animal Feed.” This draft guidance document (GFI #158), when finalized, will describe FDA’s current thinking regarding the use in animal feed of material from deer and elk that are positive for Chronic Wasting Disease (CWD) or that are at high risk for CWD.

CWD is a neurological (brain) disease of farmed and wild deer and elk that belong in the cervidae animal family (cervids). Only deer and elk are known to be susceptible to CWD by natural transmission. The disease has been found in farmed and wild mule deer, white-tailed deer, North American elk, and farmed black-tailed deer. CWD belongs to a family of animal and human diseases called transmissible spongiform encephalopathies (TSEs). TSEs are very rare, but are always fatal.

This draft Level 1 guidance, when finalized, will represent the Agency’s current thinking on the topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. An alternate method may be used as long as it satisfies the requirements of applicable statutes and regulations.

Draft guidance #158 is posted on the FDA/Center for Veterinary Medicine Home Page. Single copies of the draft guidance may be obtained from the FDA Veterinarian.

https://web.archive.org/web/20100310210459/http://www.fda.gov/AnimalVeterinary/NewsEvents/FDAVeterinarianNewsletter/ucm103406.htm


Why is this important?

Comparing the Distribution of Ovine Classical Scrapie and Sporadic Creutzfeldt-Jakob Disease in Italy: Spatial and Temporal Associations (2002-2014) 

Ru G1 ., Pocchiari M2 ., Bertolini S. 1, Pite L.1 , Puopolo M.2 , Ladogana A.2 , Perrotta M.G.3 , Meloni D 1 . (1) National reference center for the study and research on animal encephalopathies and comparative neuropathologies (CEA). Experimental Zooprophylactic Institute of Piemonte, Liguria and Valle d'Aosta, Torino, Italy. 

(2) Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy. (3) Office 3 National center for the fight and emergency against animal diseases. Ministry of Health, Roma, Italy. 

Aim: This study aims to investigate potential spatial and temporal associations between Creutzfeldt-Jakob disease (CJD) in humans (2010-2014) and ovine classical scrapie (CS) (2002- 2006) in Italy, serving as a proxy for exposure. 

Materials and Methods: National data from prion disease surveillance in humans (sporadic CJD) and small ruminants (CS) in Italy were utilized. A descriptive geographic analysis was conducted for each disease individually. Subsequently, an ecological study was performed to compare the occurrence of both diseases at the district and regional levels. Standardized incidence ratios (SIR), adjusted for confounders, were calculated for CJD and CS by district and region, respectively, representing the outcome and proxy of exposure. Considering a possible long incubation period of CJD, two study periods were analysed: 2010-2014 for CJD and 2002-2006 for CS. Eight alternative linear regression models were developed using SIR in humans as the dependent variable and SIR in sheep as the independent variable. These models varied in the scale of SIR data (continuous vs. categorical), geographical level (district vs. region), and the potential past exposure of sheep in specific areas to a known source of infection (via a contaminated vaccine). 

Results: The analysis of data at the district level revealed no significant association. However, when considering aggregated regional data, all four models consistently indicated a statistically significant positive association, suggesting a higher incidence of the disease in humans as the regional incidence of sheep scrapie increased. 

Conclusions: While the results are intriguing, it is important to acknowledge the inherent limitations of ecological studies. Nevertheless, these findings provide valuable evidence to formulate a hypothesis regarding the zoonotic potential of classical scrapie. Further investigations are necessary, employing specific designs such as analytical epidemiology studies, to test this hypothesis effectively. 

Funded by: Italian Ministry of Health Grant number: Realizzazione del programma epidemiologico finalizzato a dare evidenza del potenziale zoonotico delle TSE animali diverse dalla BSE. Prot. N. 0018730-17/07/2015-DGSAFCOD_UO-P 

''Nevertheless, these findings provide valuable evidence to formulate a hypothesis regarding the zoonotic potential of classical scrapie. Further investigations are necessary, employing specific designs such as analytical epidemiology studies, to test this hypothesis effectively.''

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf


=====

Transmission of Idiopathic human prion disease CJD MM1 to small ruminant mouse models (Tg338 and Tg501). 

Enric Vidal1,2, Samanta Giler1,2, Montse Ordóñez1,2, Hasier Eraña3,4, Jorge M. Charco3,4, Guillermo Cantero1,2, Juan C. Espinosa5 , Juan M. Torres5 , Vincent Béringue6 , Martí Pumarola7 and Joaquín Castilla3,8,9 1 Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. 2 IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. 3 Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain. 4 ATLAS Molecular Pharma S. L. Derio (Bizkaia), Spain. 5 Centro de Investigación en Sanidad Animal, CISA-INIA-CSIC, Valdeolmos, Madrid 28130, Spain. 6 Molecular Virology and Immunology, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France 7 Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Campus de UAB, 08193 Bellaterra, Barcelona, Catalonia. 8 IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain. 9 Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain. Corresponding author: enric.vidal@irta.cat Phone: 934674040(1784) 

Aims: About 90% of Creutzfeldt-Jakob disease cases are classified as sporadic (sCJD), that is, occur infrequently, randomly and without a known cause. It is a fatal neurodegenerative disease with an incidence of 1-1.5 cases per million per year. Epidemiological studies have been so far unable to establish a causal relationship between sCJD and prion diseases in animals. 

The zoonotic potential of sheep scrapie was demonstrated in 2014 (Cassard et al., Nature Communications) through inoculation of transgenic mice overexpressing the human prion protein with scrapie isolates. The resulting prion disease was indistinguishable from that occurring after sCJD inoculation in the same model and, while these results do not demonstrate that sCJD is caused by scrapie prions, they do show that the transmission barrier between ovine and human prions is not absolute. Our aim is to further assess this zoonotic risk. 

Materials and methods: we have prepared inocula from 3 sCJD cases (MM1, MV2 and VV2) and 2 VPSPr cases (MM and MV) to verify if it is possible to recover the scrapie phenotype upon inoculation in Tg338 and Tg501 ovinized mouse models. Additionally, two different inocula gCJD (E200K) and GSS (A117V) have been also included in the bioassays as controls for classical and atypical genetic human prions, respectively.

Results: No evidence of transmission was found on a first passage in Tg338 nor Tg501ovinized mice, but on second passage, 4/10 Tg338 mice succumbed to CJDMM1 (40% attack rate after 645 dpi) and 1/12 Tg501 mice (519dpi, 10 still alive). The remaining 2nd passages are still ongoing. Conclusions: In this poster, the neuropathological features of the resulting strain are discussed. 

Funded by: MINECO grant number AGL2017-88535-P and PID2021-1222010B-C22 and by Interreg POCTEFA grant number EFA148/16 (RedPRION)

''but on second passage, 4/10 Tg338 mice succumbed to CJDMM1 (40% attack rate after 645 dpi) and 1/12 Tg501 mice (519dpi, 10 still alive). The remaining 2nd passages are still ongoing. Conclusions: In this poster, the neuropathological features of the resulting strain are discussed.''

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf


Title: Transmission of scrapie prions to primate after an extended silent incubation period)

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573

https://www.ars.usda.gov/research/publications/publication/?seqNo115=361032


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

PRION 2015 CONFERENCE

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019500/


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 1933-690X 

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160


FRIDAY, JANUARY 20, 2023 

EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES 

https://scrapie-usa.blogspot.com/2023/01/epidemiology-of-scrapie-in-united-states.html


WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al

https://scrapie-usa.blogspot.com/2021/02/scrapie-tse-prion-united-states-of.html


WEDNESDAY, MARCH 16, 2022 

SHEEP BY-PRODUCTS AND WHAT ABOUT Scrapie TSE PrP and Potential Zoonosis? 

https://transmissiblespongiformencephalopathy.blogspot.com/2022/03/sheep-by-products-and-what-about.html


WEDNESDAY, DECEMBER 8, 2021 

Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10

https://animalhealthreportpriontse.blogspot.com/2021/12/importation-of-sheep-goats-and-certain.html


''Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.''

PART 2. TPWD CHAPTER 65. DIVISION 1. CWD

31 TAC §§65.82, 65.85, 65.88

The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.

Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.

https://www.sos.texas.gov/texreg/archive/June302023/Adopted%20Rules/31.NATURAL%20RESOURCES%20AND%20CONSERVATION.html#57


17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.

Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2

1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA

Abstract

The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. Our results show positive prion detection in all products. To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats.

***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates.

***> Our results show positive prion detection in all products.

***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.

***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

=====

Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD 

Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha 

Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions. 

Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates. 

Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management. 

https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286


The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.

Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD

Acta Neuropathol 144, 767–784 (2022). https://doi.org/10.1007/s00401-022-02482-9

Published

22 August 2022

https://link.springer.com/article/10.1007/s00401-022-02482-9


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 

http://web.archive.org/web/20121022162853/http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf


Unforeseen decrease of full-length prion protein in macaques exposed to prion contaminated blood products 

Emmanuel COMOY, Nina JAFFRE, Jérôme DELMOTTE, Jacqueline MIKOL, and Jean Philippe DESLYS Commissariat à l’Energie Atomique, DRF/IBFJ/SEPIA, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France

Aims: The presence of prion infectivity in blood from patients affected by variant of Creutzfeldt-Jakob disease (v-CJD) questions the risk of its inter-human transmission through transfusion. We have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD; however, after an exposure to low infectious doses, the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement which does not fulfill the classical diagnostic criteria of v-CJD, notably concerning the pathognomonic accumulation of abnormal prion protein. Here we aim to investigate the etiology and physiopathology of this original myelopathy. 

Materials and Methods: CNS (brain and spinal cord) samples from myelopathic macaques were tested with different biochemical approaches in comparison to samples derived from either healthy animals or their counterparts exposed to different strains of prion diseases. 

Results: Current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals. Conversely, in their spinal cord we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. 

Conclusions: We here confirm the prion origin of this original syndrome, with a very specific biochemical signature linked to changes in PrP at the level of spinal cord lesions: contrary to what is classically described in prion diseases, host PrP is here altered in a form that is abnormally sensitive to degradation by cellular catabolism. This could provide the first experimental evidence of a link between loss of function of the cellular prion protein and the onset of disease. These observations open up new horizons in the field of prion diseases, which has hitherto been limited to pathologies associated with abnormal changes in cellular PrP towards highly structured conformations, with the possibility of unsuspected prion mechanisms/origins in certain neurodegenerative disorders.

Funded by: Financial support for the study was provided by the French National Research Agency (ANR). 

Grant number: ANR-10-BLAN-133001 and BIOTECS2010-BloodSecur 

Acknowledgement: We specially thank N. Lescoutra, A. Culeux, V. Durand, E. Correia, C. Durand and S. Jacquin for precious technical assistance

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf


Saturday, February 2, 2019

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

REVIEW

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

https://familialcjdtseprion.blogspot.com/2019/02/cwd-gss-tse-prion-spinal-cord-confucius.html


Chronic Wasting Disease in Texas

A Real Disease with Proven Impacts

Produced by a coalition of concerned hunters, landowners, & conservationists (last update 08/2023)

Snip…

Since 2012, CWD has been detected in wild deer in just 7 counties in Texas and is only established in the western panhandle and far west Texas.

In that same period of time, captive deer breeders have exposed almost half of Texas counties to CWD. 

Deer held in captive breeding facilities are confined to much tighter spaces, and have intimate contact with many more animals on a daily basis. By far the greatest factor in amplifying the spread of CWD is the artificial movement of these animals, shipped in livestock trailers hundreds of miles, far outside of their natural home range, and ultimately released to co-mingle with wild deer. 

Each year, Texas captive deer breeders liberate 20,000-30,000 deer from their pens to the wild. 

For every deer breeding facility where a CWD positive deer is discovered, an epidemiological investigation is conducted by the Texas Parks & Wildlife Department and the Texas Animal Health Commission to determine how many other deer may have been exposed to the disease and where they have been shipped. Because of the prolific artificial movement of captive deer, one deer with CWD can impact hundreds of other facilities and ranches across the state.

Unfortunately, released deer in Texas are not required to retain any kind of visible identification (an ear tag), and for this reason, the vast majority of released deer cannot be relocated for testing. 

As of August 2023, 116 Texas counties have received possibly infected breeder deer that cannot be located, putting more than 140,000 landowners at risk of the disease. 

Snip

The state of Texas has been testing for CWD since 2002. Since that time, more than 302,360 captive and free range deer have been tested. 

From 2015-2022, more than 127,000 samples were collected from hunter-harvested and roadkill deer. This sampling rate and risk-based distribution provides scientists confidence that they would have detected the disease if it existed at a very low prevalence (<1%) in any given region at the time sampling began.

Snip…

We have learned from other states where CWD has been present the longest, that a constant increase in the prevalence of the disease may lead to a significant decline in the deer population. When disease prevalence exceeds 20%, deer populations have declined by up to 50%. In some areas of Colorado, where CWD has been present since 1985, mule deer abundance has declined by 45% since that time, despite adequate habitat and no hunting ( Miller et al. 2008 ). Similarly, the South Converse Game Unit in Wyoming has documented CWD prevalence exceeding 50% and has seen an approximate 50% decline in mule deer populations.

Snip…

Rural Economies Deer hunting is the lifeblood of rural Texas. White-tailed deer hunting is by far the most impactful segment of the hunting economy, representing $4.3 billion, according to a recent Texas A&M Study. And while deer breeders represent a very small segment of that economy (less than 5%), they represent one of the greatest risks. ( Full Texas A&M Report )

Real Estate Rural land prices are largely driven by recreational buyers with hunting as a top land amenity. Without deer hunting, many of these properties will be worth much less.

Conservation Funding Deer hunters are the largest funders of wildlife conservation in Texas through excise taxes on firearms, ammunition, and gear along with active membership supporting and funding conservation organizations. If deer hunting suffers due to CWD, all wildlife in Texas lose.

Culture & Health Texas’ native deer herd has iconic value for all Texans. Deer hunting brings families together, creates camaraderie in communities, and serves to connect Texans to nature. There is no better protein than wild, locally harvested, non-GMO and totally organic venison. A healthy deer herd leads to healthy Texans and a healthy and prosperous Texas. 

Snip…

This isn't a disease for our lifetime. It's a disease for our grandchildren's lifetime. - Dr. Bob Dittmar, Former Texas State Wildlife Veterinarian 

Snip…

See the full text with maps, graphs, much more, excellent data…

https://bit.ly/3xL16Gm


Since 2012, CWD has been detected in wild deer in just 7 counties in Texas and is only established in the western panhandle and far west Texas.


In that same period of time, captive deer breeders have exposed almost half of Texas counties to CWD. 

https://bit.ly/3xL16Gm


As of August 2023, 116 Texas counties have received possibly infected breeder deer that cannot be located, putting more than 140,000 landowners at risk of the disease. 

https://bit.ly/3xL16Gm


Texas CWD Surveillance Positives 

https://tpwd.texas.gov/huntwild/wild/diseases/cwd/positive-cases/listing-cwd-cases-texas.phtml#texasCWD


Counties where CWD Exposed Deer were Released 

https://tpwd.texas.gov/documents/257/CWD-Trace-OutReleaseSites.pdf


Number of CWD Exposed Deer Released by County 

https://tpwd.texas.gov/documents/258/CWD-Trace-OutReleaseSites-NbrDeer.pdf


Chronic Wasting Disease CWD Captive Herds updated April 2023 

https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervids-voluntary-hcp


Chronic Wasting Disease CWD Captive Herds updated April 2023 

https://www.aphis.usda.gov/animal_health/animal_diseases/cwd/downloads/status-of-captive-herds.pdf


WEDNESDAY, NOVEMBER 01, 2023 

TEXAS CHRONIC WASTING DISEASE RISES SUBSTANTIALLY TO 575 CONFIRMED CWD CASES TO DATE

https://chronic-wasting-disease.blogspot.com/2023/11/texas-chronic-wasting-disease-rises.html


THURSDAY, NOVEMBER 9, 2023 

EFSA Annual Report of the Scientific Network on BSE-TSE 2023

https://efsaopinionbseanimalprotein.blogspot.com/2023/11/efsa-annual-report-of-scientific.html


Annual Report of the Scientific Network on BSE-TSE 2023 European Food Safety Authority (EFSA

APPROVED: 25 October 2023

https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2023.EN-8386


MONDAY, SEPTEMBER 11, 2023 

Professor John Collinge on tackling prion diseases 

“The best-known human prion disease is sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia which accounts for around 1 in 5000 deaths worldwide.”

There is accumulating evidence also for iatrogenic AD. Understanding prion biology, and in particular how propagation of prions leads to neurodegeneration, is therefore of central research importance in medicine. 

https://creutzfeldt-jakob-disease.blogspot.com/2023/09/professor-john-collinge-on-tackling.html

https://www.ucl.ac.uk/brain-sciences/dementia-ucl-priority/professor-john-collinge-tackling-prion-diseases


Terry S. Singeltary Sr.


Sent from my iPad

Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023

Food and Drug Administration's BSE Feed Regulation (21 CFR  589.2000 ) Singeltary Another Request for Update 2023 The infamous 1997 mad ...